
De energie van een systeem is de totale hoeveelheid arbeid die moet worden verricht om vanaf een grondtoestand tot de huidige situatie te komen. Bijvoorbeeld hoeveel arbeid het kost om een zwaar voorwerp vanaf de grond op een tafel te zetten, of de hoeveelheid arbeid om een spiraalveer die eerst ontspannen was een bepaalde afstand in te drukken.
De totale energie van een systeem is de som van alle vormen van energie die op verschillende manieren zijn opgeslagen. Energie is een toestandsfunctie dat wil zeggen: de hoeveelheid energie is onafhankelijk van de voorgeschiedenis. Het maakt bijvoorbeeld niet uit of een veer eerst is ingedrukt, toen op de tafel is gehesen of andersom.
Als het systeem niet wordt tegengehouden, zal het altijd proberen de hoeveelheid vrije energie zo klein mogelijk te maken: de veer rolt van tafel af en ontspant weer. Als een systeem zich in zo'n toestand van minimale energie bevindt, is het in evenwicht.
De totale hoeveelheid energie in een gesloten systeem (dat wil zeggen dat er geen materiaal of straling in- of uit kan) blijft altijd gelijk; dit heet de wet van behoud van energie. De totale energie van een systeem is de optelsom van alle microscopische en macroscopische energieën, namelijk; thermische, mechanische, kinetische, potentiële, elektrische, magnetische, chemische en nucleaire energie. De inwendige energie (U) van een systeem wordt gegeven door de som van alle microscopische energieën; alle bovenstaande behalve kinetische, potentiële en mechanische energie. In veel processen wordt een soort energie in een andere omgezet. Zo wordt in een gaskachel de chemische energie in het gas omgezet in warmte. En tijdens het vallen van een voorwerp wordt zwaartekrachtsenergie of potentiële energie omgezet in bewegingsenergie of kinetische energie.
Vaak wordt energie verward met vermogen: dit is echter energie per tijdseenheid. Iemand die op een keukentrapje klimt heeft daarvoor theoretisch net zoveel energie nodig als wanneer hij even hoog springt. Het springen gebeurt in minder tijd en daarom is daarvoor wel meer vermogen nodig.
De intensiteit waarmee een mens diverse vormen van energie ervaart verschilt soms van de objectief te meten fysische waarde van die energie. Zo is bijvoorbeeld ca. 40kJ (40 000 joule) nodig om een kopje water tot tegen het kookpunt te brengen. Met diezelfde hoeveelheid energie zou men een baksteen van een kilogram vanaf het aardoppervlak naar 4 km hoogte kunnen gooien, of een stadsbus van 4 ton een meter optillen. (Afgezien van omzettings- en wrijvingsverliezen.)
Reactie plaatsen
Reacties